Edge Detection Free Postprocessing for Pseudospectral Approximations

نویسنده

  • Scott A. Sarra
چکیده

Pseudospectral Methods based on global polynomial approximation yield exponential accuracy when the underlying function is analytic. The presence of discontinuities destroys the extreme accuracy of the methods and the well-known Gibbs phenomenon appears. Several types of postprocessing methods have been developed to lessen the effects of the Gibbs phenomenon or even to restore spectral accuracy. The most powerful of the methods require that the locations of the discontinuities be precisely known. In this work we discuss postprocessing algorithms that are applicable when it is impractical, or difficult, or undesirable to pinpoint all discontinuity locations. keywords: Fourier, Chebyshev, Pseudospectral, Gibbs, Spectral filtering, Digital Total Variation filtering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pseudospectral Method with Edge Detection Free Postprocessing for 2d Hyperbolic Heat Transfer∗

Under the governing equations of Hyperbolic Heat Transfer thermal disturbances travel with a finite speed of propagation and are visible as sharp discontinuities in the solution profiles. Due to the well-known Gibbs phenomenon, the numerical solution of hyperbolic heat transfer problems by high order numerical methods such as pseudospectral methods will feature non-physical numerical oscillatio...

متن کامل

Fourier-Padé approximations and filtering for spectral simulations of an incompressible Boussinesq convection problem

In this paper, we present rational approximations based on Fourier series representation. For periodic piecewise analytic functions, the well-known Gibbs phenomenon hampers the convergence of the standard Fourier method. Here, for a given set of the Fourier coefficients from a periodic piecewise analytic function, we define Fourier–Padé–Galerkin and Fourier–Padé collocation methods by expressin...

متن کامل

Pii: S0168-9274(01)00134-9

A postprocessing technique to improve the accuracy of Galerkin methods, when applied to dissipative partial differential equations, is examined in the particular case of very smooth solutions. Pseudospectral methods are shown to perform poorly. This performance is studied and a refined postprocessing technique is proposed.  2002 IMACS. Published by Elsevier Science B.V. All rights reserved.

متن کامل

Convergence Results for Pseudospectral Approximations of Hyperbolic Systems by a Penalty - Type Boundary Treatment

In a previous paper we have presented a new method of imposing boundary conditions in the pseudospectral Chebyshev approximation of a scalar hyperbolic equation. The novel idea of the new method is to collocate the equation at the boundary points as well as in the inner grid points, using the boundary conditions as penalty terms. In this paper we extend the above boundary treatment to the case ...

متن کامل

Comparison of derivative-based methods by normalized standard deviation approach for edge detection of gravity anomalies

This paper describes the application of the so-called normalized standard deviation (NSTD) method to detect edges of gravity anomalies. Using derivative-based methods enhances the anomaly edges, leading to significant improvement of the interpretation of the geological features. There are many methods for enhancing the edges, most of which are high-pass filters based on the horizontal or vertic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2009